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1 Abstract

One of the main issues regarding the validity of a regression is when the independent vari-

able is correlated with the error term, resulting in endogeneity problem which leads to

biased estimates.. 2SLS is typically used with several assumptions such as exclusion restric-

tions and strong instruments. This paper applies a new method proposed in Gautier et

al. (2018) (SNIV) with the idea of sparsity, which relaxes the standard 2SLS assumptions

on the excluded instruments specification and instrument strength. We first consider the

same exclusion restrictions as 2SLS, followed by relaxing the exact location of the excluded

instruments. This is the first time SNIV has been applied to these real-life datasets, and by

comparing the outcomes, the similarities and the discrepancies in the outcomes will accord-

ingly insinuate the possible validation of the assumptions made for 2SLS.

The conclusions show, under similar assumptions of exclusion restrictions, 2SLS and

SNIV yield similar results when the instruments are strong, while the former estimates and

standard errors are misleading when the instruments are weak. Relaxing excluded restric-

tions also shed lights on the behaviour of SNIV in different datasets, including sample size

and strength of the instruments.
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2 Introduction

2.1 Motivation

Statistics have always been used to answer questions quantitatively. For instance, some con-

cern estimating the consequences of a specific policy, aiding a decision maker; others might

be about how much a firm should change its output to maximize profits given a shift in

economic situation. One of the most crucial attentions regarding the validity of the results is

the assumptions made: if these are violated, the results will be not credible. There have been

many attempts to relax the assumptions while giving meaningful results with the inventions

of new and creative statistical tools. Let us take the most basic OLS as an example. One of

the requirements for OLS to perform well is a correct model specification. Non-parametric

regression was created to relax this while assuming no particular form of the model.

This paper will be focusing on the endogeneity problem, where the independent variable

is correlated with the error term, causing bias in the estimates and misleading results. In-

stead of the usual instrumental variables settings, new methods with weaker assumptions (to

some degree) are used. Particularly, if the conventional method assuming exclusion restric-

tions on all of the instrument variables, the new techniques substitute this with ”sparsity”,

which only requires a certain number of exclusion restrictions without knowing the restric-

tions’ exact locations. It is also robust to weak IVs since there is no particular restriction on

the joint distribution of the endogenous variables and the proposed instruments. Further-

more, the technique will still be working in high-dimensional settings where the usual IVs

estimates perform poorly as the number of independent variables and instruments increases.

However, the methods are more computationally intensive than traditional approaches such

as two stage least squares by relying mostly on solving optimisation problems without a

closed form solution (no first stage).
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Since the method (SNIV) has not been yet applied to any real life data (only simulated

data), it would be interesting to see the performances of this new method on some influential

articles of choice. The main goal is to use SNIV side by side with the standard instrumental

variables estimates under identical and slightly weaker assumptions. Then, by comparing

the results, if the figures are similar under such weaker presumptions, it is safe to conclude

the original results applying 2SLS is relatively robust. However, if there is a discrepancy

between the two methods, it should be seen as a signal hinting the underlying assumptions

might not be as valid as claimed to be.

2.2 Outline

For the next part, the paper will be briefly talking about endogeneity and the standard IVs

estimators, with some introduction on the new methods. Section 3 tackles the methodology

used, including the details on assumptions made, different types of techniques with their

equivalent implementation and comparison with each other. Data implementation is in sec-

tion 4 where three chosen articles are presented using both old and new methods to produce

some conclusions. Section 5 raises some of the main drawbacks of the basic methodology

and the proposals to adjust the problems. The paper ends with a summary and conclusions.

3 Literature review

This section will briefly go through the problem of endogeneity together with the conventional

instrumental variables estimates solution, following by the ”sparsity” concept in some recent

studies and data selection suggestions for section 4.

Given the following model:

y = βendoxendo + βexoxexo + ε
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where y is the dependent variable.

xendo are the endogenous variables.

xexo are the exogenous variables.

Cov(xendo, ε) 6= 0, independent variables are partly correlated with the error term,

which causes OLS estimates to be biased and gives misleading results.

The IV estimators can be used to solve the problem by using instrumental variables (IVs)

called z. For this method to work, z must satisfy two properties: z should be (i) highly cor-

related with the endogenous variables, and (ii) not contained in the right-hand side of the

equation or satisfying exclusion restrictions. The former can be simply examined using first-

stage equations while the later remains as an untestable assumption in the exactly identified

case (the number of instruments equal to the number of parameters). This is where the idea

of sparsity was implemented to weaken the assumption (ii) and obtain a more robust version.

Sparsity has been practised in high-dimensional statistics under the concept of regular-

ization, which is especially useful in high-dimensional data models where the number of

dimensions (or the number of independent variables) is relatively large compared to the

sample size (or even larger).

Let us take LASSO (Least absolute shrinkage and selection operator, introduced by Frank

and Friedman(1993) and Tibshirani (1996)) as an example. Given K independent variables

and N observations, the usual multivariate statistics such as OLS fails if K is of order larger

than N. LASSO, on the other hand, allows for less important regressors to be exactly zero

in coefficients, and therefore still gives relatively more meaningful predictions. If it is in-

deed true that many coefficients in K are zero, the coefficients can be seen as being sparse:

that is among K regressors, only some of the variables’ coefficients are significant. ”Lasso

Regularization for Selection of Log-linear Models: An Application to Educational Assor-

tative Mating” (Mauricio Bucca, Daniela R. Urbina (2019)) applies LASSO and compares
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the results with the conventional approach, which uses information criteria to choose among

many different models. Notice that as the number of independent variables increases, the

number of reasonable model specifications will also increase at a faster rate. This poses a

critical problem when using conventional methods as only a handful of models can be esti-

mated based on pure intuition and past workings, and the ”best” one is chosen according

to AIC and BIC. As pointed out by the papers, these usually lead to inconsistent results

and complicated models unless the data is very large and non-sparse in simulated cases.

LASSO, on the other hand, chooses 55 out of 300 parameters in simulated cases and at most

150 parameters out of 300 in empirical data, both give much more parsimonious model and

consistent predictions. There are other articles such as Yuri Fujino, Hiroshi Murata, Chihiro

Mayama, and Ryo Asaoka (2015) or Jorge A. Chan-Lau (2017) where the forecasts using

conventional choosing models basing on theory can be improved by assuming sparsity among

many potential regressors and let LASSO does the selection work.

It can be clearly seen that by making use of the idea of sparsity, the researchers can rely

less on intuition and previous studies findings when it comes to finding appropriate regressors

while still giving out sensible results. However, it should be noticed that LASSO being great

at predicting outcome variables does not mean parameters inferences on these models are

valid. This is especially important when it comes to instrumental variables estimates where

casual inferences on the endogenous variables are the end goals. Many solutions of how to

implementing sparsity to IV estimates were introduced.

Belloni, Chen, Chernozhukov, and Hansen (2012) proposed the idea of using LASSO in

the first-stage (predictive-stage) equation to choose large-coefficient instrumental variables

among many potential ones, assuming that the first-stage is sparse and omitting small, non-

zero valid instruments from this stage will not affect the results. The predicted endogenous

variables are then used as normal in the second stage to get the desired estimates. The
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sparsity assumption is applied only for selecting instruments and exclusion restrictions as-

sumption still maintained.

When it comes to applying LASSO to select many potential controls, things are more

complicated, and Belloni, Chernozhukov, and Hansen (2014) suggests using double selec-

tion. Particularly, sparsity is practised to sort out useful predictors for outcome variables

and the endogenous variables, with the union of these set as controls variables. The article

also summarises three different applications, pointing out that applying the sparsity concept

improves the quality of the estimates by allowing for more variables and many of their al-

ternate functional forms to be considered instead of just using theory and past studies to

choose a small set of instruments.

There are many others such as Zhang and Zhang (2014), van de Geer, Buhlmann, and

Ritov, et al. (2014). However, these articles usually assume few endogenous independent

variables with strong exclusion restrictions assumption on the instruments variable, linear

and sparse first stage (Eric Gautier, Chris Rose, Alexandre Tsybakov (2018)). Also notice

that, even in lower dimension framework, the assumption of exclusion restrictions and strong

instruments are required for the IV regressions to be valid. Bound, Jaeger, and Baker (1995)

revisits Angrist and Krueger (1991) to demonstrate the potential inconsistency and even

finite-sample bias coming from the weak instrumental variable estimates despite of the large

sample size. Another evidence of void estimates from the use weak instruments in IV esti-

mates is investigated in Stock and Staiger (1994), where asymptotic distribution theory is

derived for the instrumental variable estimates with one endogenous variable weakly corre-

lated with the proposed instruments. The results suggest the basic TSLS models are biased

even in large sample size and needs to be modified.

From all of the above, since strong exclusion restrictions and weak instruments violations

10



are problematic regardless of sample size, Gautier et al. (2018) proposes a new method where

the these assumptions of the excluded instruments and theirs strength are relaxed, to some

extent, using sparsity concept, which is also where the main methodology used in this paper

derived from. Generally, it requires only part of a range of potential instruments satisfies

exclusion restrictions, not all of them, and is robust to weak instruments. The details of the

methods, which is known as SNIV, will be fully addressed in the next section.

Concerning data used to implement old and new techniques, there are several require-

ments. The articles should be cross-sectional data, meaning no panel or time series data.

This is due to the results being based on independent samples where there should be no

autocorrelation. For computational reasons related to SNIV, the number of variables should

not be too large (particularly, less than fifty in total). These criteria are applied for sim-

plicity purpose and can absolutely be relaxed with appropriate adjustment. We apply the

approach to the following three articles: (i) Angrist and Evan (1998), “Children and Their

Parents’ Labor Supply: Evidence from Exogenous Variation in Family Size”, (ii) Angrist,

Graddy and Imbens (2000), “The Interpretation of Instrumental Variables Estimators in Si-

multaneous Equations Models with an Application to the Demand for Fish”, and (iii) David

Card (1995), ”Using Geographic Variation in College Proximity to Estimate the Return to

Schooling”. All of these articles used the conventional instrumental variables estimates and

their results can be compared to those of SNIV estimates. More details are provided in

section 4.

4 Methodology

The method is mainly concerned with the problem of endogeneity, where the conventional

first-stage-second-stage instrument variables regressions are used. For a more detailed de-

scription formally and mathematically of the method, refer to Eric Gautier, Chris Rose,
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Alexandre Tsybakov, ”High-Dimensional Instrumental Variables Regression and Confidence

Sets”, (2018). The highlighted idea is, instead of allowing for exclusion restrictions, a consid-

erably weaker assumption (sparsity) is used. Specifically, if the former requires the exact lo-

cations of the instruments, the later only assuming the number of ”true” instruments (which

satisfy exclusion restrictions) among a range of potential instrumental variables. There are

also other differences, which will be discussed in detail later on. Another crucial note is there

is no two-stage procedure with closed-form estimates. In fact, the method relies on solving

optimization problems instead and therefore will be computationally more intensive.

4.1 Model set up

The main purpose of the paper is to compare the performances of this new method with the

typical instrumental variables regressions under similar assumptions. The end results are

not about which method is superior; rather the differences between these estimates in many

real-life data will draw some possible explanations on why the results turn out the way it is

and potentially show which are more reliable in certain situations.

For simplicity purposes, data types are restrained to only cross-sectional data, meaning

no panel data will be considered, and only parametric models. Let N be the number of

observations, i = 1,2,...,N. The general model set up is as follow:

yi = xTi βx + zTi βz + ε

or yi = wT
i β + ε

where wT
i =

[
xTi zTi

]
and β =

[
βTx βTz

]
; E[ziεi] = 0

y is the dependent variable.

x composes of P endogenous variables.

z composes of L included exogenous variables and potential instrumental variables.

w composes of all independent variables, K = P+L in total
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The K independent variables can be partitioned into three non-overlapping and exhaus-

tive groups:

- The included regressors: are variables typically considered as control variables and en-

dogenous variables, has significant coefficients (β can be non-zero) and contributes to the

explanation of independent variable. Let Jinc denote the indices of these variables.

- The excluded regressors: the coefficients are equal to 0 (β = 0), which satisfy exclusion

restrictions condition and If they are exogenous, they can be considered as instrumental

variables. Let Jexc denote the indices of these variables.

- The uncertain regressors: where it is unknown whether these coefficients are excluded or

included (β 6= 0 or = 0). However, these are assumed to satisfy the ”sparsity” condition.

Let Junc denote the indices of these variables. Notice that this is a new group proposed by

SNIV as the 2SLS estimates only consider the other two groups.

4.2 Assumptions

One of the most important assumptions is sparsity. In this context, s sparsity means, among

the uncertain regressors, there are at most s included variables (and the rest is excluded) but

the exact locations of which are unidentified. In other words, in this group, it is assumed

to have at least dim(Junc) − s exclusion restrictions, the identities of which are unknown.

The larger s is, the less sparse it is. On the other hand, as s progressively gets smaller,

the assumption gets stronger and we will have dim(Junc) instrumental variables at s = 0. s

sparsity assumption for Junc can also be expressed as:

|βJunc|0 ≤ s, |βJunc |0 =
∑
i∈Junc

1(βi 6= 0)

For different settings, the allocations of variables among the three groups will be modi-

fied. For instance, if Junc is set to be an empty set, then the assumptions will be precisely
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the same as that of exclusion restrictions in the normal instrumental variables regression

with Jexc instrumental variables. This is exactly what will be done in the later section when

comparing the SNIV results, which are robust to weak instruments, with those of other IVs

papers, which requires strong instruments to be valid. In reality, however, the researcher

might want to run a range of value of s and choose the appropriate level accordingly.

Besides relaxing exclusion restrictions assumption, since this method using regulariza-

tion of high-dimensional statistics, it is entirely possible for a small number of observations

and a large number of independent variables K. This is not achievable in conventional IVs

estimates as the regressions falling apart or just performing poorly when K progressively get-

ting much larger, especially when the number of regressors exceeds N. This is because when

K > N , some of the component matrices needed in the estimates are not invertible, and

therefore the formula used is invalid. Particularly, to see why this is the case, let us consider

the typical two-stage least square estimates: β2SLS = (X′Z(Z′Z)−1Z′X)−1X′Z(Z′Z)−1Z′y =

(X̂′X̂)−1X̂′y. When k > n, rank(X̂′X̂) = rank(X̂) = min(n, k) = n < k and therefore the

matrix is singular and cannot be inverted.

Since SNIV can only give the estimates for confidence sets, not point estimates or con-

fidence interval, there should be a distinction between confidence intervals and confidence

sets. Usually, the interpretation for the confidence interval of a specific variable is for all

of the confidence intervals from all possible samples, 95% of them contain the true value of

the population parameter: limn→∞ Pr[β̂ − t1−α/2se(β̂) ≤ β ≤ β̂ − tα/2se(β̂)] = 1− α. The

confidence set can be seen as a joint probability of confidence intervals of all independent

variables in the model, and therefore will be larger for the same level of significance. Thus, it

is justified to compare confidence sets between different methods rather than confidence set

from one method with confidence intervals from others. The following section will provide

the formula for the procedures for the confidence sets of both SNIV and 2SLS.
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4.3 Procedure: SNIV estimator

The method is called SNIV, which is the abbreviation for self-normalized instrumental vari-

able. For SNIV confidence set estimates, we start with the mentioned model:

yi = xTi βx + zTi βz + ε

= wT
i β + ε

with E[ziεi] = 0 , |βJunc |0 ≤ s , and βJexc = 0.

First of all, we start by defining the sparse identified set as:

Is =
{
β ∈ RK : E[zi(yi −wT

i β)] = 0L, |βJunc|0 ≤ s,βJexc = 0
}

where the last two elements are defined by definition of sparsity and exclusion restrictions

while the first element comes from the condition E[ziεi] = 0. Depending on the value of s,

this set could have one or many elements (β). In general, the set is not a singleton (i.e. there

might be more than one β in the set) and therefore we usually have partial identification,

not point identification.

From here, to construct a confidence set, the concept of self-normalized sums is needed.

Firstly, the confidence set can be denoted as follow:

Ĉn(s) =

β ∈ RK : max
l=1,...,L

∣∣∣∣∣∣ 1n zTl (y −Wβ)√
Q̂l(β)

∣∣∣∣∣∣ ≤ r0, |βJunc|0 ≤ s,βJexc = 0


with Q̂l(β) = 1

n

∑n
i=1 z2

liε
2
i
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Most of the components are straight forward, and the only new component is the maxi-

mization constraint: maxl=1,...,L

∣∣∣∣ 1n zTl (y−Wβ)√
Q̂l(β)

∣∣∣∣ ≤ r0.

Originally, this comes from the moment condition E[ziεi] = 0 or:

1

n
ZT (y −Wβ) = 0

However, with the sparsity setting, we can concentrate our attention toward a subset of the

variables, for instance, those satisfy the event:

G0 =

 max
l=1,...,L

∣∣∣∣∣∣ 1n zTl (y −Wβ)√
Q̂l(β)

∣∣∣∣∣∣ ≤ r0


which is exactly the condition mentioned before. The left hand side of the inequality is also

known as self normalized sum with the choice of r0 comes from the literature on ”Moderate

deviations of self-normalized sums”. Technically, r0 should be picked so that the probability

of the event G0 being true is 1− α asymptotically, and therefore β belongs in the set Ĉn(s)

with the probability at least 1− α:

lim
n→∞

inf
β∈Is

Pr
(
β ∈ Ĉn(s)

)
≥ 1− α

The details of which scenario operates with which value of r0 can be accessed in Gautier

et al. (2018). In general, there are five scenario in total, and since the fourth scenario condi-

tion is satisfied most of the time, we will be using the results below (which is exactly quoted

from Gautier et al. (2018)):

”Scenario 4: (ziui(β))ni=1 are independent,
∣∣∣((E [|ZlU(β)|2+δ

])
(E[Z2

l U(β)2]−(2+δ)/2)
)
l∈[L]

∣∣∣
∞
≤

γ2+δ for δ ∈ (0, 1] and γ2+δ ≥ 0 and L ≤ α/
(

2Φ
(
−n1/2−1/(2+δ)γ

−1/(2+δ)
2+δ

))
16



Under this scenario, the appropriate r0 is:

r0 = − 1√
n

Φ−1
( α

2L

)

”

Besides requiring the existence and bounds of some moments of ZlU(β), This scenario

also assumes independence between observations, allows for conditional heteroscedasticity

while does not rely on symmetry. The result also does not impose any restrictions on the

joint distribution of Z and W, meaning there is no specific condition on the strength of

the instruments. Thanks to this, the method enables estimations with robustness to weak

instruments unlike TSLS where strong first stage is required. Another side note is, smaller

r0 will yield tighter inference.

With such construction of the confidence set, for the results to be valid, the only assump-

tions required are those in the scenario four and sparsity. As a result, the method is robust

to weak instruments (no assumption needed on the joint distribution of the instruments and

the endogenous variables) and to partial identification of Is.

However, working directly on the maximization constraint is not straight forward, and

therefore it needs to be transformed. Specifically, the condition in the set can be rewritten

in quadratic form:

max
l=1,...,L

∣∣∣∣∣∣ 1n zTl ε√
Q̂l(β)

∣∣∣∣∣∣ ≤ r0

⇐⇒ max
l=1,...,L

(zTl ε)2 ≤ (nr0)
2Q̂l(β)

⇐⇒ max
l=1,...,L

al + bTl β + βTQlβ ≤ 0

17



where

al = (1− nr20)yTzlz
T
l y

bl = −2(1− nr20)WTzlz
T
l y

Ql = (1− nr20)WTzlz
T
l W

And therefore the confidence set can be rewritten as:

Ĉn(s) =

(
β ∈ RK : max

l=1,...,L
al + bTl β + βTQlβ ≤ 0, |βJunc|0 ≤ s,βJexc = 0

)
(1)

According to this formula, we will be obtaining the confidence set by solving the following

two problems: (i) min βp s.t. β ∈ Ĉn(s), (ii) max βp s.t. β ∈ Ĉn(s) which are lower bound

and upper bound for each coefficient at a given s sparsity (βp is an element of β ).

When computing this in a program, we replace ”|βJunc|0 ≤ s” by ”there exists m ∈ RK :

mk(1 − mk) = 0, (1 − mk)βk = 0 for k = 1. . .K,
∑

k∈Junc
mk ≤ s”, which is non-convex,

and together with the quadratic inequality constraint, these optimisations can be seen as a

non-convex quadratic program, an NP-hard problem. In practice, this can get very com-

putationally heavy. In this paper, the solution will be determined by solving a hierarchy

of semidefinite programs, which will converge to the true optimal value as the hierarchy

increases. To be more specific, Gloptipoly package is used, which is ”intended to solve, or

at least approximate, the Generalized Problem of Moments (GPM), an infinite-dimensional

optimization problem which can be viewed as an extension of the classical problem of mo-

ments” (D. Henrion, J. B. Lasserre, J. Loefberg (2009)). The hierarchy mentioned above is

the degree of linear matrix inequality relaxations of the GPM or a hierarchy of semidefinite

programming (SDP), called ”relmin” and ”relmax” for minimum and maximum relaxations.

The higher the degree of the hierarchy, the smaller the relaxation, and the more precise the

results will be on the optimal value. Notice that these hierarchy can be set in advance with
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the trade-off between easier computation and a more precise result. For most of the time,

we will be using relmax = relmin = 2. The estimates using this will be at least as wide as

the true confidence set and therefore, is always valid. Nevertheless, the set could be conser-

vative (too wide). The detailed underlying theory, description and usage of Gloptipoly can

be found in D. Henrion, J. B. Lasserre, J. Loefberg (2009) and J. B. Lasserre (2008). Also,

the details of the code can be found in the appendix A.2.

The end results are vectors of lower bounds and upper bounds Ĉn,lb(s), Ĉn,ub(s) with the

confidence set as desired:

lim
n→∞

Pr
(
Ĉn,lb(s) ≤ β ≤ Ĉn,ub(s)

)
≥ 1− α (2)

We will be comparing this with IV two-stage least square estimates confidence set:

lim
n→∞

Pr
(
β̂2SLS + tΣ̂−

1
2 1k ≤ β ≤ β̂2SLS − tΣ̂−

1
2 1k

)
= 1− α (3)

where β̂2SLS
a∼ N (β,Σ)

Xinc are k independent variables

Zinst are the instrumental variables

Σ̂ = ŝ2(X′incZinst(Z
′
instZinst)

−1Z′instXinc)
−1

ŝ2 = 1
N−k

∑
i(yi −Xi,incβ̂2SLS)2

1k is a column vector of 1 with k rows

t is the critical value derived from Pr(γ ≤ t) = (α/2)1/k, γ ∼ N (0, Ik)

α is the level of significance
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Table 1: Comparison between SNIV, IVs (2SLS)

SNIV 2SLS

Pros

-Only need r0 and sparsity assumption

-Robust to weak instruments

-Allow for a small number of observations relative to

the number of regressors and instruments (n <L <K)

-Allowing for partial identification

-Confidence interval are possible

-Very easy to compute

-Typically the narrowest

Cons

-Confidence intervals are not possible

-Computationally intensive

-Need to choose the appropriate s

-Need exclusion restrictions on all available instruments

-Is invalid in high-dimensional settings

-Need strong instruments



4.4 Summary and comparison between SNIV, IVs (2SLS)

The table 1 briefly goes through the benefits and drawbacks for each models

5 Data implementation

The three following subsections will follow a very similar structures: data description, the

models specifications and the results with relevant comments. Regarding the models, it will

mostly contain the following settings: (i) the original 2SLS estimates; (ii) SNIV with the

same assumptions as 2SLS concerning exclusion restrictions specifications while is robust

to weak instruments (which is also referred as SNIV model (A1)); and (iii) SNIV relaxing

exclusion restrictions and also robust to weak instruments (which is also referred as SNIV

model (A2)). To be specific, if 2SLS supposes some variables are controls while others are

instruments, SNIV model (A1) will specifically setting the indexes of the endogenous and

control variables to Jinc while the rest will go to Jexc, leaving Junc always empty. The SNIV

model (A2), on the other hand, is all about relaxing the exclusion restrictions, i.e. Junc will

no longer be empty. For the final model type, there are numerous ways to assign variables

into the three groups, and we have decided on two different set of assumptions: the first one

hypothesises all of the independent variables are in Junc while the second one assuming the

same except only the endogenous variable is in Jinc. Since all of the results from these two

specifications yield similar results, the paper only reports the results from the former, with

different degree of sparsity. Due to the structures of the assumptions made in SNIV (A2),

SNIV (A1) assumptions are stronger than those in SNIV (A2) as the later does not specified

the exact location of the exclusion restrictions given the same sparsity level.

For 2SLS, the paper shows the lower bounds and upper bounds as well as the value of

the point estimates and their equivalent first-stage F statistics or Cragg-Donald statistics
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whenever there are more than two endogenous variables. For SNIV, the results are reported

in the form of confidence sets accompanied by the estimates status. These statuses are put

inside the bracket below the bounds, indicating whether or not the program is able to solve

exactly (status = 1), is solved but the bounds given are bigger than the true bounds of the

confidence sets (status = 0) or is not able to find feasible solution (status = -1).

Another notice coming from computational problems is the sparsity level should not be

set too low as the results will have infeasible solutions (because the sparse identified set will

be empty, meaning the results cannot be trusted) or too high as the confidence sets will be

two large. Additionally, this paper will not implement all possible models for each dataset,

only a few are used.

5.1 Data implementation: Angrist, Graddy and Imbens (2000)

case

Brief data description: The article was concerned with the relationship between price

and quantity of fish in Fulton fish market, which involved simultaneous equations of supply

and demand function where endogeneity was a high possibility if only each equations were to

be estimated separately. One of the main workings of the paper was to apply instrumental

variable regressions to solve this problem. Specifically, they focused on the demand function

where the dependent variable is the log quantity of whiting (pounds per day) sold at the

Fulton fish market, representing demand of fish, while the variable of interest was the log av-

erage daily price of the fish (dollars per pound). Other dummies controlled variables, namely

indicators for days of the week, cold and rainy on shore, were also included in all models.

The proposed instrument was the weather conditions in the sea, which could be categorised

into three collectively exhausted indicators depending on the measurement of wave height

and wind speed: a day is classified as ”stormy” if the wave is more than 4.5 feet in height

and the wind speed is at more than 18 knots, ”fair” if the wave height is less than 3.8 while
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the wind speed is less than 13 knots, ”mixed” if the computed figured is in between. The

dataset had 111 observations as in 111 days at the market. The summary statistics of the

dependent variable and the variable of interest are provided in table 2.

Table 2: Fulton fish dataset: summary statistics (n=111)

Variable Mean S.d. Min Max
log (average daily price) -0.1937 0.3819 -1.1077 0.6643
log (quantity) 8.5234 0.7417 6.1944 9.9814

For the instrumental variables estimator to work, the weather conditions in the sea should

be an excluded from the demand function while it is included in the supply function. The

author argued that supply of whiting was plausibly affected by the weather at the sea but

the same condition was illogical for the demand of fish since the consumers decision to buy

fish should not be affected by the ocean weather. This is the exclusion restriction conditions

of the model.The instruments are also claimed to be strong, and with the rule of thumb, this

implies the first stage F statistic should be greater than 10.

It should be noticed that this is the smallest dataset among three chosen articles. And

in a small sample size, it might be hard to predict and explain the estimates since most of

the theory based on asymptotic properties.

The models: First of all, for 2SLS, there are four different models implemented. The

model (1) uses the whole dataset with the only instrument as stormy; second model uses only

non-stormy days with fair or mixed as instruments; third model takes only non-fair days and

has mixed or stormy as instruments; finally, the fourth specification is where all categories

are included (two among three instruments to avoid dummies variable traps). Secondly,

SNIV model (A1) assuming the same exclusion restrictions, for instance, the first model will

list log price, dummies on weekday, cold and rain on shore as included regressors (Jinc) while
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stormy is the only excluded restriction. Since there is no elements in Junc, sparsity s is equal

to 0 since there is no coefficients in the uncertain set in the first place. SNIV (A2), on the

other hand, specifies Junc as all of the regressors including the instruments. This means there

is a possibility that the ”assumed instruments” might not be excluded from the model. In

other words, there is a chance weather at the sea might be affecting the demand of the con-

sumers. One possible explanation for this could be caused by the stormy weather patterns

coinciding with the eating habits of the consumers, which in turn affecting the demand of

whiting. As a result, SNIV (A2) has weaker assumptions relative to SNIV (A1).

The results are in the table 3. Firstly, we would expect the estimates to be negative,

as implied by the law of supply and demand: for demand function, as the price of a normal

good increases, the demand for that good will decrease as the buyers have less incentive to

consume more of that good. The original 2SLS concludes the same things for the first and

fourth models, except for the model 2 and 3 where the low observations might be the cause

of the insignificant coefficients. SNIV (A1) reaches a similar conclusion that the effect of

price on quantity of fish sold is negative in first and last models since the confidence sets

are completely contained in the negative region while the inference is non-conclusive for the

rest. Furthermore, since the only difference in the assumptions made between SNIV (A1)

and 2SLS is the strength of the instruments, the similarity is not surprising considering the

F-statistics for the first stage of model 1 and 4 are sufficiently high. Also, noticing that the

status of SNIV (A1) are all 1, the numbers are solved exactly and are not too wide. This

is not always the case, as can be seen for the SNIV (A2). Although some of the solutions’

statuses in the third column are not one, the final conclusion can still be retained. To illus-

trate this point, the lower bound of SNIV (A2) for model 4 having status zero indicates this

figure is lower than than the true value. However, since the upper bound is solved exactly

and is negative (-0.0001), regardless of the value of the lower bound, the whole confidence

set is smaller than zero. The same could be applied to model 4. Despite having all status at
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Table 3: Fulton fish dataset: 2SLS, SNIV confidence sets estimates for log price, with log quantity as the dependent variable.

n/intruments 2SLS SNIV (A1) SNIV (A2, s = 1) SNIV (A2, s = 2)

(1)n=111;

stormy

-2.2318, -1.2228, -0.2138

F-stat = 14.61

-2.8138, NA, -0.2339

( 1 1 )

-2.8138 , NA , 0.0000

( 0 1 )
-

(2)n=79;

fair (stormy = 0)

-1.4841 ,-0.3090, 0.8662

F-stat = 10.083

-1.6529, NA ,1.6725

( 1 1 )

-1.6529, NA ,0.1901

( 1 0 )
-

(3)n=66;

mixed (fair = 0)

-2.9559 ,-1.2626 ,0.4308

F-stat = 5.220

-4.7403 ,NA, 0.7178

( 1 1 )

-0.1559 ,NA ,0.7177

( 0 1 )
-

(4)n=111;

stormy & mixed

-1.7254, -0.9470, -0.1685

F-stat = 12.082

-3.3102, NA ,-0.0623

( 1 1 )

-1.3134, NA, -0.0003

( 0 0 )

-1.3086 ,NA ,0.8104

( 0 0 )

* The results follow the format of ”<lower bound> <point estimates> <upper bound>”. For SNIV, the numbers

under the estimates inside the brackets show the solution status of failed (-1), solved but not tight (0) or solved exactly

(1).

* All model has log(quantity) as the dependent variable and log(price) as the main endogenous variable of interest.

Different specification of instruments and subsamples are defined at the first column of the table. Controlled variables

included are monday, tuesday, wednesday, thursday, cold and rain on shore.



non-exact value, this simply shows the true confidence set of the effect of price on quantity

sold is narrower and included in the range from -1.3134 to -0.0003, which is entirely negative.

Regarding the magnitude of the estimates, 2SLS and SNIV (A1) are very similar, but

most of the time the later is wider reflecting its nature of being robust to weak instruments.

SNIV (A2) with different sparsity levels also have certain characteristics, particularly the

higher the sparsity level, the tighter the confidence set will be and less leaning toward zero.

Model 4 SNIV (A2) demonstrates this as the sparsity at 2 (from -1.3086 to 0.8104) gives a

larger and insignificant confidence set compare to the one at sparsity 1 (more sparse) (from

-1.3134 to -0.0003, which does not center at zero like the former). This is reasonable as

higher sparsity imposing tighter restriction and stronger assumptions, which results in a

tighter confidence set. However, when the status is zero, which means the solution is not

exact, higher sparsity degree will not always end up being tighter. It will become more lucid

in the last datasets.

Overall, the conclusion stays the same for all of the model: the price has negative impact

on the quantity of whiting sold in the Fulton fish market. And since all of the SNIV results

are similar to those of 2SLS, the assumptions on exclusion restrictions of 2SLS is difficult to

reject.

5.2 Data implementation: Card (1995) case

Brief data description: The article tried to estimate the effect of education on earnings,

which has been researched in many papers. The main problem for this setting is the existence

of many omitted variables which correlated with both wage and years of schooling, causing

education to be endogenous and the conventional methods will result in an over or under-

statement of the coefficients estimates. For example, elements such as family background,
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including financial status, parental education level, or the environment when growing up,

can all influenced the decision to take more or less education. Or Griliches (1977) also sug-

gested ”ability bias”, where the higher this value is, the higher the earnings will be and the

more likely that person will take further education since they have the ability to do so. If

any of these variable is also a direct determinant of earnings and not accounted for in the

model, they could inflate/ deflate the effect of education with their own effects. Table 4 is

the summary statistics for log of wage in 1976 (the dependent variable) and the years of

education in 1976 (variable of interest).

Table 4: Card dataset: summary statistics

Variable Mean S.d. Min Max n
log (wage in 1976) 6.2618 0.4438 4.6052 7.7849 3010
years of education in 1976 13.2253 2.7497 0.0000 18.000 3613

The author suggested using instrumental variables estimator with college proximity as

an instrument, assuming this variable is not directly correlated with wage, i.e. excluded

from the model. He argued that people growing up without a near access to college will

have to pay more, at least by the living cost of renting instead of staying at home, compare

to the people who live near college. This gap impeded the intention for further education.

Furthermore, the exclusion requirement can be tested, according to the author, by regressing

the income on the college distance and the education level using interaction terms of being

near college and parental educational background as instruments (for more details, see Card

(1995)). The conclusion was the insignificant direct effect of the instruments, which satisfied

excluded restrictions. Additionally, the added controlled variables consisted of dummies for

black and various of regional effects in both 1976 and 1966, specifically indicators for living

in southern, SMSA and nine other regions. The paper also controls for parental educational

backgrounds (14 dummies variables in total).
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It is worth noticing that besides years of schooling, the article specified at most three

other endogenous variables (that is experience, experience square and knowledge of the world

of work), accompanied by at least three more instruments, namely age, age square and IQ

score. However, since the paper only reported the coefficients for education, discussion will

be restricted just on the effect of education.

The models: we start with the basic model (model 1), and the further specifications

from 2 to 7 can be seen in the tables. The first specification (basic model) has three en-

dogenous variables: education (ed76), experience (exp76) and square of experience (exp762).

Being near 4-year college (near4c), age and square of age are the instruments, respectively.

Other controls include indicator for black, living in southern area and living in SMSA in 1976

and in 1966, eight dummies for nine regions in 1966, and 14 indicators for parental missing

education, mother’s and father’s education interactions and family structures at the age of

14. Model 2 is the most simple, making experience become an included exogenous variable,

leaving education as the only endogenous regressor. SNIV (A1) has the same presumptions,

which is reported in the second column.

SNIV (A2), again, puts all regressors in Junc and sets different level of sparsity. Even

the article itself have three main points why college proximity can be included in the model.

For instance, area with the existence of college institutions are likely to have higher average

salary and higher elementary and secondary schools quality compare to other area, which

consequently leads to higher wages. Another possibility is families, with strong emphasis on

education, tend to have children with higher abilities, which will obviously affecting their

future earnings. The results are only reported for model 2 as this is the only model that

gives feasible solutions.

The results for 2SLS and SNIV (A1) are shown in table 5 and table 6 gives SNIV (A2)

results just for model 2 with three sparsity level. For the original (2SLS) estimates, the

effect of education are sometimes significant (i.e. the confidence set does not include zero)
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Table 5: Card 1995 dataset: 2SLS, SNIV confidence sets estimates for education in 1976, with log wage in 1976 as the dependent
variable

Model 2SLS SNIV (A1)

(1) The basic model (specified as before).

(n=3010)

0.0452, 0.1324, 0.2197

F stat= 4.010

-0.5102, NA ,1.2683

(1 1)

(2) Assuming exp76, exp762 is not endogenous.

(n=3010)

-0.0231 ,0.1404, 0.3040

F stat= 14.936

-0.0020, NA ,0.3856

( 1 1 )

(3) Adding kww as control variables

(n =2963)

-0.0276, 0.1359, 0.2993

F stat= 2.467

-1.2897, NA, 1.5016

(1 1)

(4) Adding kww as an endogenous variable, iq as an instrument

(n=2040)

-0.1079 ,0.0893, 0.2864

F stat=1.246

-1.5433, NA ,1.7204

( 1 1)

(5) The basic model with instrument for ed76 as nearc4a instead.

(n=3010)

0.0928, 0.1937, 0.2945

F stat= 3.844

-0.9703, NA ,1.4972

( 1 1)

(6) The basic model with instrument for ed76 as nearc4 and nearc2 instead.

(n=3010)

0.0333 ,0.1169, 0.2005

F stat= 3.107

-0.4972, NA, 0.9473

( 1 1)

(7) The basic model with restriction on only age 14-19 in 1966.

(n = 2037)

-0.0302 ,0.0944 ,0.2191

F stat= 2.029

-1.0011, NA, 1.2687

( 1 1)

* The results follow the format of ”<lower bound> <point estimates> <upper bound>”. For SNIV, the numbers under the

estimates inside the brackets show the solution status of failed (-1), solved but not tight (0) or solved exactly (1).



Table 6: Card 1995 dataset: SNIV with relaxed exclusion restrictions results for model 2

SNIV (A2) s=1 s=2 s=3

Model (2)
-0.0291, NA, 0.0000

( 0 0)

-0.1018, NA ,0.4662

( 0 0)

-2.7984, NA ,3.5095

( 0 0)



and positive in model 1, 5 and 6. Notice that in the articles, by comparing to the conven-

tional OLS estimates, the IVs gave much higher coefficients, explicitly 20-60 % higher and

therefore, he concluded that the conventional methods undermined the benefit of education

on wages. However, there is little discussion on the significance level of these coefficients.

Furthermore, the first stage/Cragg-Donald statistics is not that high (all much lower than

10, except model 2), signalling very weak instruments are used. Since for 2SLS to be valid,

strong instruments are required and violation of these might lead to invalid inferences of

all model, except the second one. This one, however, assumes experience to be exogenous,

which is not plausible as there are many factors which could cause omitted variable bias here.

For instance, people with higher abilities are more likely to take further educations while

it is logical to assume that earnings are increasing with ability (See Uusitalo, R (1999) for

more details). With weak instruments, the outcome of 2SLS might be even worse than their

conventional methods OLS in terms of bias, even with large sample size (See in the literature

review section). This problem is fixed in SNIV (A1), where all of the confidence sets are

from negative to positive region, implying inconclusive impact coming from education. In

general, to guard against weak instruments, SNIV tends to expand the confidence sets, and

in some cases where the instruments are too weak, the confidence set can be unbounded

(Dufour, Jean-Marie (1997)). The good thing about this is there is no need for evaluating

the strength of the instruments with some random number (rule of thumb uses 10) and the

end results are valid regardless.

SNIV (A2) does not give much information. Too much sparsity might not make sense, as

in model 2 there should be at least 2 variables that is included such as education and experi-

ence. Therefore, s = 1 suggesting only at most one included regressor should not be trusted.

Furthermore, there is the problem with endogenous experience, only weaken the validity

of the estimates. On the other hand, the two later sparsity degree give non-conclusive and

progressively larger confidence sets, as expected. Therefore, although the estimates for SNIV
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(A2) of the second model is available, the results do not demonstrate concrete evidences for

the influence of education on wages.

To sum up, although there is several significant and relatively larger positive effects

coming from education in 2SLS models, SNIV indicates the results should not be concluded

as such since weak instruments are present, and might annul the legitimacy of the conclusion.

5.3 Data implementation: Angrist and Evan (1998) case

Brief data description: the article was interested in the effect of number of children on

the labour supply of the mothers as well as whole families, including the fathers. Intuitively,

having more children might deter the mother from working as she needed to spend more time

taking care of the children. On the other hand, it was also reasonable to assume that having

more children increased the financial burden of the family, leading to the mother having to

work more to compensate for the extra expense. The authors try to investigate the matters

using different dependent variables, which are composed of mother’s labour supply, family

income and father’s labour supply. The main variable of interest is a dummy for having

more than 2 children, which is potentially endogenous due to simultaneous causality with

the dependent variables (see Goldin, 1990 p.125).

The authors proposed applying the instrumental variables estimator with indicators for

same-sex children or two boys/ two girls as instruments. The idea was having two first chil-

dren as either two boys or two girls encourage the family to have an extra child (see Westoff,

Potter, and Sagi (1963), Iacovou, Maria, 2001), implies a positive correlation between the

number of children and having same-sex of the first two children. Moreover, since the par-

ents cannot decide the gender of their own children, the instruments can be seen as being

predetermined and therefore should not be directly correlated with the mothers’ labour sup-
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plies, satisfying exclusion restrictions condition. Other controlled variables included were

the mother’s age, age at first birth, dummies for races of the mother and whether or not the

first born or the second born was a boy. The same characteristics for the fathers were used

if the dependent variables represented fathers’ labour supply.

There are a total of four different data sets: PUMS 1980s full sample, PUMS 1980s mar-

ried sample, PUMS 1990s full sample, and PUMS 1990s married sample. Full sample uses

all observation while married sample only contains those who are married. Due to the sim-

ilarity between samples in 1980s and 1990s, the main discussion will focus only on samples

in PUMS 1980s. The results for PUMS 1990s can be seen in the appendix (A.1)

The models: There are a total of ten different dependent variables used (6 proxies

for the mothers’ labour supply and 4 measurements for the counterpart ones), namely in-

dicator for worked for pay of the mother / father (workedm/workedd), mother / father’s

weeks worked (weeksm1 / weeksd1), hours worked per week (hourswm / hourswd), labour’s

income (incomem / incomed), log family income (famincl), and log non-mom income (non-

momil). The only endogenous variable is an indicator for having more than 2 kids (morekids)

with samesex or boys2, girls2 as instruments. The included exogenous variables are mother

/ father’s age (agem1/aged1), age at first birth (agefstm / agefstd), races(blackm, hispm,

othracem / blackd, hispd, othraced), boy at first birth (boy1st) and boy at second birth

(boy2nd) if the instrument is samesex, otherwise excluded boy2nd. The specifications of

each model can also be fully seen in the resulted tables and the summary statistics of the

dependent variables and the endogenous variable is provided in table 7.

Similarly, 2SLS and SNIV (A1) has identical exclusion restrictions settings. SNIV (A2)

estimates will assume all regressors (including morekids, current age and age at first birth of

the mother, her dummies for races, indicator for boy first, boy second, and either samesex
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Table 7: Card dataset: summary statistics for PUMS 1980s

Variable All women Wives Husbands
workedm / workedd
(=1 if worked for pay in year prior to census)

0.5655
(0.4957)

0.5282
(0.4992)

0.9769
(0.1502)

weeksm1 / weeksd1
(Weeks worked in year prior to census)

20.8342
(22.2860)

19.0184
(21.8674)

47.9571
(10.4902)

hourswm / hourswd
(Average hours worked per week)

18.7977
(18.9157)

16.6985
(18.3356)

43.4904
(12.2865)

incomem / incomed
(labour earnings in year prior to census, in 1995 dollars)

7,160.8
(10,804)

6,250
(10,211)

38,919
(25,014)

famincl
(family income in year prior to census, in 1995 dollars)

10.3178
(1.3503)

10.5589
(1.0436)

nonmomil
(family income - Mom’s labour income, in 1995 dollars)

10.3647
(1.2450)

morekids
(=1 if mother had more than 2 children)

0.4021
(0.4903)

0.3806
(0.4855)

0.3806
(0.4855)

Number of observation (n) 394840 254652 254652

or two boys, two girls) to be in Junc (uncertain) and then giving different sparsity level.

The reason we might want this is if the instruments, samesex and boys2/girls2, are in fact

not excluded. For instance, it could be the case that having mixed gender children requires

less/more attentions from their mothers, which consequently forces the mother to be at

home less/more. Intuitively, family with mixed sex children will have to put in more efforts

in raising the children as boys and girls are fundamentally different, which requires more

knowledge compared to those with only boys or girls. There has been some evidence on

how labour supply was affected by the gender of the child in the family (Pabilonia, S.W.,

& Ward-Batts, J. (2010) and Sun, Ang and Zhang, Chuanchuan and Hu, Xiangting (2016))

which could support this point of view.

The results for 2SLS and SNIV (A1), which are the first and second columns, are all

extremely similar, if not almost identical for some of the models. This is plausible as the first

stage strength of the instruments statistics are undeniably large (F-stat is from 700 to 1700).

For both full and married sample, the mother’s labour supply are negatively affected by

the number of children in the family, demonstrated in the models using workedm, weeksm1,

hourswm and incomem. However, when considering family income, non-mom income or
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Table 8: PUMS 1980s full sample: 2SLS, SNIV confidence sets estimates for morekids, with various dependent variables for
labour supply (n = 394840)

Dependent variable
2SLS SNIV (A1) SNIV (A2) s=2 SNIV (A2) s=3 SNIV (A2) s=4

instruments: samesex

workedm

weeksm1

hourswm

incomem

famincl

-0.1782, -0.1173, -0.0564

-8.2631, -5.5588, -2.8545

-6.8539, -4.5468, -2.2397

-3224.9, -1903.0 ,-581.0

-0.1905, -0.0253, 0.1399

F stat= 1674.223

-0.1780, -0.0561

(1 1)

-8.2500, -2.8433

(1 1)

-6.8460, -2.2329

(1 1)

-3218.2, -574.6

(1 1)

-0.1905, 0.1405

(1 1)

-0.1770, 0.8919

( 0 0)

0.0002, 0.0961

( 1 0)

0.0005, 1.8914

( 1 0)

10.7, 4769.2

( 0 0)

-1.3989, 1.7252

( 0 0)

-0.5626, 1.0573

( 0 0)

-1.5262, 1.4755

( 0 0)

-1.5545, 2.1931

( 0 0)

-1754.2, 2414.6

( 0 0)

-2.9485, 2.2418

( 0 0)

-

-

-

-

-



Dependent variable
2SLS SNIV (A1) SNIV (A2) s=2 SNIV (A2) s=3 SNIV (A2) s=4

instruments: boys2, girls2

workedm

weeksm1

hourswm

incomem

famincl

-0.1707, -0.1102, -0.0498

-7.9496, -5.2633, -2.5770

-6.6008, -4.3094 ,-2.0180

-3126.2, -1813.3, -500.4

-0.1977, -0.0337 ,0.1303

F stat= 849.249

-0.1327, -0.0830

(1 1)

-6.8780, -3.8496

(1 1)

-5.7780, -2.9404

(1 1)

-2954.5, -528.1

(1 1)

-0.2215, 0.1290

(1 1)

-0.2505, 1.8628

( 0 0)

0.0113, 0.1973

( 0 0)

0.0095, 0.6623

( 0 0)

3.0, 4735.9

( 0 0)

-1.5533, 1.9969

( 0 0)

-1.7043, 2.5492

( 0 0)

-1.3937, 1.6394

( 0 0)

-2.5855, 1.2842

( 0 0)

-1674.1, 2465.2

( 0 0)

-2.3144, 2.3354

( 0 0)

-1.5357, 1.7005

( 0 0)

-2.4337, 1.4451

( 0 0)

-3.7585, 1.0980

( 0 0)

-1975.0, 2543.1

( 0 0)

-1.4712, 2.3585

( 0 0)

* The results follow the format of ”<lower bound> <point estimates> <upper bound>”. For SNIV, the numbers under the

estimates inside the brackets show the solution status of failed (-1), solved but not tight (0) or solved exactly (1).



Table 9: PUMS 1980s married sample: 2SLS, SNIV confidence sets estimates for morekids, with various dependent variables
for labour supply (n = 254652)

Dependent variable
2SLS SNIV (A1) SNIV (A2) s=2 SNIV (A2) s=3 SNIV (A2) s=4

instruments: samesex

workedm

weeksm1

hourswm

incomem

famincl

nonmomil

-0.1848, -0.1170, -0.0492

-8.2149, -5.2720, -2.3292

-7.2551, -4.7836, -2.3120

-2660.9 ,-1274.3 ,112.3

-0.1870, -0.0443 ,0.0985

-0.1373 ,0.0335 ,0.2043

F stat= 1385.684

-0.1849 ,-0.0487

(1 1)

-8.2085 ,-2.3121

(1 1)

-7.2550, -2.3020

(1 1)

-2655.6 ,122.8

(1 1)

-0.1873 ,0.0996

(1 1)

-0.1375 ,0.2054

(1 1)

-0.8758 ,1.8485

( 0 0)

0.0066, 0.1233

( 0 0)

0.0049 ,0.2937

( 0 0)

17.3, 2268.2

( 0 0)

-1.0605, 1.7238

( 0 0)

-1.1517, 1.3492

( 0 0)

-1.4471, 2.5517

( 0 0)

-1.4721, 2.5956

( 0 0)

-2.1079, 0.5358

( 0 0)

-1353.6 ,2210.6

( 0 0)

-2.0272 ,2.2240

( 0 0)

-1.6350 ,2.0153

( 0 0)

-

-

-

-

-

-



Dependent variable
2SLS SNIV (A1) SNIV (A2) s=2 SNIV (A2) s=3 SNIV (A2) s=4

instruments: boys2, girls2

workedm

weeksm1

hourswm

incomem

famincl

nonmomil

-0.1763, -0.1089, -0.0416

-7.9560, -5.0336 ,-2.1112

-7.0051 ,-4.5510 ,-2.0969

-2634.3, -1257.7 ,118.9

-0.1899, -0.0482, 0.0936

-0.1467, 0.0228 ,0.1923

F stat= 703.044

-0.1464 ,-0.0800

(1 1)

-7.3473, -2.5647

(1 1)

-6.2901, -2.8284

(1 1)

-2953.5, 674.3

(1 1)

-0.2452, 0.1169

(1 1)

-0.1494 ,0.1808

(1 1)

-0.4970,1.2386

( 0 0)

0.0002, 0.2743

( 1 0)

-0.0001 ,1.7626

( 1 0)

0.7, 3506.9

( 0 0)

-1.2694 ,1.5899

( 0 0)

-1.1492, 1.3759

( 0 0)

-1.6532 ,2.1879

( 0 0)

-7.7467, 5.6557

( 0 0)

-8.1019, 6.2874

( 0 0)

-1663.1, 3668.5

( 0 0)

-2.3214, 2.2933

( 0 0)

-2.1799 ,2.4185

( 0 0)

-1.9294 ,2.2648

( 0 0)

-8.8158 ,6.8721

( 0 0)

-7.0310 ,7.6678

( 0 0)

-2325.4 ,2595.0

( 0 0)

-1.4687, 3.2616

( 0 0)

-1.9145, 1.6676

( 0 0)

* The results follow the format of ”<lower bound> <point estimates> <upper bound>”. For SNIV, the numbers under the

estimates inside the brackets show the solution status of failed (-1), solved but not tight (0) or solved exactly (1).



Table 10: PUMS 1980s married sample using husband characteristics: 2SLS, SNIV confidence sets estimates for morekids, with
various dependent variables for labour supply (n = 254652)

Dependent variable
2SLS SNIV (A1) SNIV (A2) s=2 SNIV (A2) s=3 SNIV (A2) s=4

instruments: samesex

workedd

weeksd1

hourswd

incomed

-0.0166 ,0.0040, 0.0246

-0.8606, 0.5793 ,2.0192

-1.1736, 0.5094, 2.1924

-4743.1, -1362.1, 2018.9

F stat= 1380.911

-0.0011, 0.0092

(1 1)

-0.8810 ,2.0525

(1 1)

-1.2006 ,2.2227

(1 1)

-4797.2, 2076.8

(1 1)

-0.7661, 0.3872

( 0 0)

-2.1879, 0.6006

( 0 0)

-2.7364 ,1.5551

( 0 0)

-4196.3 ,1098.3

( 0 0)

-2.2215 ,2.3348

( 0 0)

-2.5710 ,2.1440

( 0 0)

-2.8412 ,1.5701

( 0 0)

-2116.3 ,4404.9

( 0 0)

-

-

-

-



Dependent variable
2SLS SNIV (A1) SNIV (A2) s=2 SNIV (A2) s=3 SNIV (A2) s=4

instruments: boys2, girls2

workedd

weeksd1

hourswd

incomed

-0.0192 ,0.0013, 0.0217

-1.0208, 0.4075 ,1.8359

-1.2366, 0.4336, 2.1039

-4821.8 ,-1466.3 ,1889.1

F stat= 701.010

-0.00091, -0.00041

(1 1)

-0.2603, 1.2456

(1 1)

-1.6643 ,2.1956

(1 1)

-6204.4 ,2363.0

(1 1)

-1.2179, 0.4180

( 0 0)

-2.4207 ,0.6610

( 0 0)

-2.9819 ,1.6221

( 0 0)

-2333.8, 1484.0

( 0 0)

-2.7920, 2.1979

( 0 0)

-2.9938, 1.6763

( 0 0)

-2.3908 ,1.9678

( 0 0)

-4071.5 ,3476.1

( 0 0)

-1.8734, 1.8479

( 0 0)

-2.6131, 2.1002

( 0 0)

-2.1990 ,2.0669

( 0 0)

-3496.6 ,2674.4

( 0 0)

* The results follow the format of ”<lower bound> <point estimates> <upper bound>”. For SNIV, the numbers under the estimates

inside the brackets show the solution status of failed (-1), solved but not tight (0) or solved exactly (1).



father’s labour supply, the results are inconclusive as the confidence sets spanning from neg-

ative to positive region. Generally, the conclusions are the same for 2SLS and SNIV (A1)

since the only difference in assumptions made are satisfied as the models have very strong

instruments. Additionally, all solution for SNIV (A1) are 1 indicating the magnitudes of the

estimates are the tightest as it should be, and hence concluding 2SLS and SNIV (A1) are

similar is entirely valid.

On the other spectrum, the results for SNIV (A2) relaxing exclusion restrictions, which

are from the third onward column, generate much more interesting results regarding the

statistics for the mothers’. Worked for pay model no longer has negative significant confi-

dence set. Instead these sets contain zero for all sparsity levels. Other dependent variables

such as weeksm1, hourswm and incomem have their model at the lowest sparsity s = 2

producing completely opposite of which is observed previously: the effect of having more

children is positive on the labour supply of the mothers. (is there any paper with this kind

of results, is this weird?). The rest of the confidence set on other sparsity levels are similar

to those in workedm models - insignificant. This is reasonable as SNIV (A2) assumptions

when s is greater or equal to 3 is weaker than those made in SNIV (A1).

This phenomenon raises some questions. First of all, why is worked for pay the only

one without positive confidence sets? and secondly, why are these having the opposite sign

as the original estimates? For the former question, notice that workedm is a binary vari-

able, meaning having a linear model might not be appropriate, and therefore, the results

for this dependent variable could be invalid. Another explanation is the attribute which

this dependent variable describe mother’s labour supply is fundamentally different from the

other measures: having more children might deter the number of hour worked or salary but

not necessary making the mother entirely quit the job. As a result, the conclusion for this

model is different from the rest although these are all proxy for labour supply for the mother.
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The second question could be explained by the assumptions of exclusion restrictions or

simply due to SNIV computational problems. If it is the former one, and since SNIV (A2)

has a more general assumption, the instruments chosen might not be excluded as proposed

before, and should be used with cautions. For instance, there might be a possibility of

the mother’s age and mother’s age at first birth are excluded from the models instead of

samesex or the other two instruments. It could be the case that the sample only restricts

itself to mothers aged 21 to 35, and therefore the supply of labour within this age bracket

of women are the same, resulting in the variable being irrelevant to the models. Notice

that even though ones can run the OLS or 2SLS for the coefficients of the mother’s age and

her age at first birth and have statistically significant coefficients accordingly (not reported

in the papers, but could be run), the results could be biased and they might not actually

be included regressors as indicated by the p-values or t statistics. Therefore such methods

should not be used to confirm (just as references for) these suspicions, however, since the

two methods yield different results, the underlying assumptions are likely to be violated for

2SLS. Moreover, having more child leading to an increase in mother’s labour supply is not

entirely impossible as there are articles with the same conclusions (See Maria Iacovou (2001)

and Claudia Hupkau, Marion Leturcq(2016)). As mentioned before, this outcome could be

due to the mother trying to work more to compensate for the expenses of the extra children.

On the contrary, another hypothesis could be due to assigning s to be equal to 2 being

too small (too much sparsity), and the results are not sensible. In other words, among the re-

gressors, the fact that there are at least three included regressors should be true. Intuitively,

the three variables could be morekids; age of the mother, which could affect the workings

schedule to adapt to the current situation of a certain age brackets; and even the instruments

(same reasons specified in the models explanations). With this train of thought, the results

from SNIV (A2) can only say more if higher sparsity gave more definite confidence set, which
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is not the case here as the status are all 0, meaning the set is not tight and could be either

positive or negative. Subsequently, the standings of the 2SLS is still valid. However, there is

no strict evidence for this case. Other models, which originally concluded as being unaffected

by the number of children stay the same for all equivalent models for SNIV (A2).

Another side notes for the outcomes of SNIV (A2) might not become wider as the level

of sparsity decreases. It is true that as s increases, the identified set will become larger and

wider. However, this effects might not necessary transfer to the confidence sets except when

the statuses are 0 or 1. Also notice that the statuses of the results here are 0 implying the

solution is not exact, meaning the solutions given are not the tightest and therefore, even

though the true bounds are larger for higher value of s, there is no telling the estimated

confidence sets for this one with 0 status is larger since it could be relatively narrower than

the higher sparsity ones but still be an inexact solutions.

6 Summary of the results

Although the discussions in three subsections of section 4 are different as the three datasets

have different characteristics, there are a few similar patterns drawn from those results. First

of all, 2SLS and SNIV with the same exclusion restrictions are very similar when strong in-

struments are used such as the first and the last datasets. This is important considering how

distinct these two methods are when approaching endogeneity using instrumental variables.

The results for all the datasets fortify the validity of SNIV under the assumptions of 2SLS

being true in real-life datasets, and the method can be seen as a trust-worthy alternative/

substitution of 2SLS in future researches. Futhermore, when weak instruments are presented,

the 2SLS will be biased and misleading while SNIV remains valid as it is robust to weak

instruments, although the confidence set might produce very wide confidence sets to com-
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pensate for the lack of information. However, this is much better than having a misleading

results produced by 2SLS. This can be seen the clearest for the second subsection (dataset)

in section 4.

Secondly, when the exclusion restrictions are relaxed in these kind of model, things are

more complicated, especially for these kind of model with only just identified amount of

instruments. If it is indeed true that the exclusion restrictions are violated, the SNIV (A2)

states that the exclusion restrictions are in fact controlled variables instead while the current

controlled variables are actually excluded. Although this might be the circumstances some-

times, there is a possibility that the model will end up having no exclusion restrictions at all,

and the end results will be unknown for the conventional 2SLS as it is now unidentified while

SNIV confidence set should be very large and ranging from negative to positive numbers.

Thirdly, the higher the sparsity level, the more likely the identified set will be empty,

producing infeasible solutions or just not making sense. On the contrary, too little sparsity

will impose too little restraints, and the estimates will have uninformative values.

Finally, the biggest drawback for SNIV is the computational problem, especially when

the exclusion restrictions assumption is relaxed. If the program is not able to solved exactly,

it is really hard to make definite inferences. Angrist and Evan dataset illustrates this the

most as some of the results from SNIV (A2), if solved exactly, can shred some light on the

true direction of effect of having more children on the mother’s labour supply, and can even

show whether the exclusion restrictions in 2SLS are violated or not.
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7 Extension

7.1 Computational method alternative

As can be clearly seen in the previous section, SNIV’s biggest problem lies in the compu-

tational intensity. As mentioned in the methodology section, this paper uses Gloptipoly to

solve the non-convex problem in SNIV confidence sets.

Ĉn(s) =

(
β ∈ RK : max

l=1,...,L
al + bTl β + βTQlβ ≤ 0, |βJunc|0 ≤ s,βJexc = 0

)
Under this method, it was proved that as the level of relaxation (relmax) increases, the

solution will converge to the true value, and more importantly, this is a finite convergence,

meaning the convergence rate is fast enough such that the level of relaxation required for

the true value coinciding with our solution is not infinity. However, in many cases, it took

a very long time to run the estimates even at ”relmax” equal to only 3 or 4, and therefore,

continuing to increase this value to get the closer-to-the-truth sets is out of the questions.

This results in many confidence sets estimates providing conservative solutions, and thus,

inconclusive inferences.

However, gloptipoly is not the only way to estimate the NP-hard problem in the equa-

tion above. Instead of having the standard SOS hierarchy of semi-definite programmings

(SDP), another way, proposed by Weisser, Lasserre and Toh (2017), is to use sparse BSOS-

”a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity”. In-

tuitively, the method is less computational heavy in two main aspects: (i) while the former

relies solely on SDP, the later is solved using a mixture of SDP and Linear programming

(which is easier to solved than SDP), and (2) Sparse BSOS exploits cases in which not all

constraints contain all variables. The first advantage comes from the sparse BSOS inherit-

ing the advantages of BSOS itself, where the size of the semidefinite constraint is fixed and

controlled by a certain parameter called k. Linear-program-hierarchy is obtained when k is
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equal to zero, leading to a simpler problem than a purely SDP problem. The second one

implies the optimization is more simple with less complicated constraints. For instance, if

one of the constraint is f(x1, x2) = 1 given that there are two variables, using sparsity on

”there is at least of of the variable being equal to zero in this equality”, the constraint will

depend only on one variable such as f(x1) = 1. Obviously, the later constraint will be more

simple to solve compare to when both of the variables in in the restriction. Moreover, this

sparsity has nothing to do with the sparsity assumption made by SNIV, and do not have to

be chosen manually.

7.2 Some instruments are endogenous

Even though the basic SNIV considered in this paper has already relaxed some of the as-

sumptions, it still assumes the instruments are exogenous. Gautier et. al (2018) extend

SNIV to account for the possibility that some instruments are endogenous. Particularly,

instead of having the following moment conditions:

E[zε] = 0,

we assume

E[zε] = θ,

instead, where θ is sparse with the degree of s̃. This means among all of the instruments,

there are at most s̃ endogenous variables. The procedures for this assumption application

into the regressions can be replicated from those for the sparsity of the coefficients (the

indexes of the endogenous, exogenous and unknown variables need to be provided). The

modified confidence set will be:

Ĉn(s, s̃) =

(β,θ) : max
l=1,...,L

∣∣∣∣∣∣ 1n zTl (y −Wβ)− nθl√
Q̂l(β, s̃)

∣∣∣∣∣∣ ≤ r0, |βJunc|0 ≤ s,βJexc = 0, |θJ̃unc
|0 ≤ s̃,θJ̃exc = 0


46



with Q̂l(β, s̃) = 1
n

∑
i(zliεli − θl)2

The first element is adjusted to account for the non-zero vector θ, and the last two

conditions added represents the sparsity assumptions on the number of endogenous instru-

ments. Again, one can transform the first condition into a quadratic inequality constraint

and use gloptipoly to solve the problem. This time, however, the researcher has to choose

two different sparsity level for the coefficients or one can combine the two into one con-

straint (|βJunc|0 + |θJ̃unc
|0 ≤ s, with appropriate s value). As an example, this method can

be used in the second model of the second datasets in section 5 (Card 1995 dataset). In

such model, there are potentially endogenous controlled variables, namely experience and

experience square, and with the specification of these variables being in the uncertain group

(meaning they can be excluded or not from the model), s̃ can be specified as 2 to account

for these potential endogeneity.

8 Conclusion

By applying the SNIV for dealing with endogeneity using instrumental variables in three

different real-life datasets, the paper was able to make relative comparisons with the tradi-

tionally used 2SLS performances under different sparsity assumptions. The findings show,

given the exact positions of the excluded instruments, SNIV performances are very good

compared to those in 2SLS since they are robust to weak instruments and when the strong

instruments are given, the confidence sets are similar. Considering that there is no depen-

dence on the first stage for SNIV, it should be emphasized that computational intensity is

a significant drawback of this method, as SNIV is technically different from the usual 2SLS

where the later’s analytical results can be derived and easily computed while the former

depends on solving semi-definite optimisation problems. This means, under reasonable com-

putation limitations and same assumptions, SNIV can be considered as a great alternative

to 2SLS for future research projects. Furthermore, due to the model set up of SNIV, this
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method can be generalised in many aspects, such as the positions of exclusion restrictions

or even the exogeneity of the instruments. When there is a difference in the 2SLS and SNIV

methods, the underlying assumptions of exclusion restrictions might have been incorrect and

the estimates should be used with cautions. There are other further extensions that has not

been applied yet to real-life data, and can be considered and evaluated in the future.
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10 Appendix

A.1. The 2SLS and SNIV estimates for 1990s PUMS sample (including summary

statistics).

Table 11: Summary statistics for PUMS 1990s

Variable All women Wives Husbands
workedm / workedd
(=1 if worked for pay in year prior to census)

0.6672
( 0.4712)

0.6701
(0.4702)

0.9695
(0.1720)

weeksm1 / weeksd1
(Weeks worked in year prior to census)

26.3875
(22.8722)

26.5252
(22.8206)

47.1569
(11.9109)

hourswm / hourswd
(Average hours worked per week)

22.6897
(19.0836)

22.2617
(18.8467)

44.2302
(13.3508)

morekids
(=1 if mother had more than 2 children)

0.3705
(0.4829)

0.3627
(0.4808)

0.3627
(0.4808)

Number of observation (n) 380,007 301,595 301,595
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Table 12: PUMS 1990s full sample: 2SLS, SNIV confidence sets estimates for morekids, with various dependent variables for
labour supply (n = 380007)

Dependent variable
2SLS SNIV (A1) SNIV (A2) s=2 SNIV (A2) s=3 SNIV (A2) s=4

instruments: samesex

workedm

weeksm1

hourswm

-0.1534 -0.0951 -0.0369

-8.2738 -5.4749 -2.6761

-6.4749 -4.1196 -1.7642

F stat= 1721.328

-0.1533 -0.0367

(1 1)

-8.2546 -2.6731

(1 1)

-6.4602 -1.7614

(1 1)

-0.0943 0.2251

(0 0)

0.0035 3.2025

(0 0)

0.0003 0.9460

(1 0)

-0.9369 1.8542

(0 0)

-6.1089 7.1058

(0 0)

-3.5760 2.8262

(0 0)

-

-

-

instruments: boys2, girls2

workedm

weeksm1

hourswm

-0.1534 -0.0952 -0.0369

-8.2563 -5.4579 -2.6595

-6.4856 -4.1307 -1.7759

F stat= 860.968

-0.1787 -0.0053

(1 1)

-8.6288 -2.2142

(1 1)

-7.0029 -1.2689

(1 1)

-1.7398 2.4372

( 0 0)

-0.0002 3.5834

( 0 0)

0.0012 2.5955

( 0 0)

-6.1007 6.4618

( 0 0)

-3.0898 6.2553

( 0 0)

-3.2561 3.5017

( 0 0)

-7.7460 6.8818

( 0 0)

-3.4288 2.9263

( 0 0)

-2.3685 2.8015

( 0 0)

* The results follow the format of ”<lower bound> <point estimates> <upper bound>”. For SNIV, the numbers under the

estimates inside the brackets show the solution status of failed (-1), solved but not tight (0) or solved exactly (1).



Table 13: PUMS 1990s married sample: 2SLS, SNIV confidence sets estimates for morekids, with various dependent variables
for labour supply (n = 301595)

Dependent variable
2SLS SNIV (A1) SNIV (A2) s=2 SNIV (A2) s=3 SNIV (A2) s=4

instruments: samesex

workedm

weeksm1

hourswm

-0.1579 -0.0996 -0.0413

-8.0337 -5.2269 -2.4201

-6.1990 -3.8713 -1.5436

F stat= 1723.055

-0.1577 -0.0412

(1 1)

-8.0127 -2.4201

(1 1)

-6.1826 -1.5433

(1 1)

-0.5861 1.4034

( 0 0)

0.0005 1.3393

( 0 0)

0.0006 0.6875

( 0 0)

-3.0510 3.6542

( 0 0)

-8.4404 6.9890

( 0 0)

-5.5671 2.1994

( 0 0)

-

-

-

instruments: boys2, girls2

workedm

weeksm1

hourswm

-0.1579 -0.0996 -0.0413

-8.0294 -5.2227 -2.4160

-6.2006 -3.8730 -1.5454

F stat= 861.572

-0.1941 -0.0035

(1 1)

-8.7711 -1.6825

(1 1)

-7.0383 -0.6390

(1 1)

-0.6628 1.1714

( 0 0)

0.0006 2.6670

( 0 0)

0.0003 2.1347

( 1 0)

-2.4401 3.0067

( 0 0)

-3.2957 3.9611

( 0 0)

-2.9740 4.1589

( 0 0)

-3.0228 2.4328

( 0 0)

-4.3655 5.7457

( 0 0)

-3.7556 2.6200

( 0 0)

* The results follow the format of ”<lower bound> <point estimates> <upper bound>”. For SNIV, the numbers under the

estimates inside the brackets show the solution status of failed (-1), solved but not tight (0) or solved exactly (1).



Table 14: PUMS 1990s married sample with husband characteristics: 2SLS, SNIV confidence sets estimates for morekids, with
various dependent variables for labour supply (n = 301595)

Dependent variable
2SLS SNIV (A1) SNIV (A2) s=2 SNIV (A2) s=3 SNIV (A2) s=4

instruments: samesex

workedd

weeksd1

hourswd

-0.0120 0.0095 0.0310

-0.6832 0.8001 2.2833

-1.1862 0.4751 2.1365

F stat= 1718.927

0.0004 0.0188

(1 1)

-0.6841 2.2968

(1 1)

-1.1926 2.1456

(1 1)

-0.4681 0.5579

( 0 0)

-5.3624 0.0060

( 0 0)

-5.4110 0.0272

( 0 0)

-3.6076 3.5249

( 0 0)

-4.6801 5.1635

( 0 0)

-3.8942 5.1060

( 0 0)

instruments: boys2, girls2

workedd

weeksd1

hourswd

-0.0119 0.0095 0.0310

-0.6805 0.8027 2.2860

-1.1795 0.4818 2.1432

F stat= 859.490

0.0003 0.0103

(1 1)

-0.9137 2.5110

(1 1)

-0.7450 1.7337

(1 1)

-0.4428 0.3529

( 0 0)

-5.7229 0.0084

( 0 0)

-5.3897 0.0119

( 0 0)

-3.1823 3.5479

( 0 0)

-4.4537 3.2509

( 0 0)

-3.9845 2.5179

( 0 0)

-2.8958 2.5754

( 0 0)

-4.6083 2.8940

( 0 0)

-4.0428 2.6479

( 0 0)

* The results follow the format of ”<lower bound> <point estimates> <upper bound>”. For SNIV, the numbers under the

estimates inside the brackets show the solution status of failed (-1), solved but not tight (0) or solved exactly (1).



A.2. The Matlab codes: an example for the Fulton fish dataset model 4 SNIV

(A2).

The main code:

clear all

warning(’off’,’all’)

% MODEL

% y = w’*beta_w = x’*beta_x + z’*beta_z + u,

% E[zu] = 0,

% beta(Jexc)=0

% beta(Junc) IS SPARSE

rng(123)

realdata=1; %SET TO 1 TO USE REAL DATA, OTHERWISE SIMULATED DATA IS USED

% REAL DATA

if realdata==1

dataFulton %THIS IS AN m FILE, THE DIRECTORY INSIDE WILL NEED TO BE CHANGED

%4

df = [qty, price, mon, tue, wed, thur, rainy, cold, stormy, mixed];

df(any(isnan(df),2), :) = []; %delete nan rows

y=df(:,1);

n=length(y);

x = df(:,2); %endogenous

z = df(:,end-1:end); %continuous controls (none in this case) + instruments

w = [x z];
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v = [ones(n,1) df(:,3:end-2)]; %constant + dummies controls

l = size(z,2);

k = size(w,2);

end

%F stat for first stage:

X1 = [ones(n,1) df(:,3:end-2)];

X2 = df(:,end-1:end);

Xall = [X1 X2];

Y = df(:,2);

M1 = eye(n) - X1*inv(X1’*X1)*X1’;

MX = eye(n) - Xall*inv(Xall’*Xall)*Xall’;

Fstat =

(Y’*M1*X2*inv(X2’*M1*X2)*X2’*M1*Y/size(X2,2))*inv(Y’*MX*Y)*(n-size(Xall,2))

%% SOME CALCULATIONS for partial out dummies (including constant)

%partial out all possible dummies

ybix = v’*y;

ybix2 = v*inv(v’*v)*ybix;

y = y - ybix2;

wbix = v’*w;

wbix2 = v*inv(v’*v)*wbix;

w = w - wbix2;
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zbix = v’*z;

zbix2 = v*inv(v’*v)*zbix;

z = z - zbix2;

%%

% now the data is only: [y, x, instruments]

Jexc=[]; %SET INDICES OF EXCLUDED REGRESSORS (beta=0)

Junc=[1:k]; %SET INDICES OF UNSURE REGRESSORS (beta SATISFIES SPARSITY)

Jinc=setdiff(1:k,union(Jexc,Junc)); %SET INDICES OF INCLUDED REGRESSORS (NO

RESTRICTIONS ON beta)

Jexc_=[1:l]; %SET INDICES OF EXOGENOUS INSTRUMENTS (theta=0)

Junc_=[]; %SET INDICES OF POSSIBLY ENDOGENOUS INSTRUMENTS (theta IS SPARSE)

Jinc_=setdiff(1:l,union(Jexc_,Junc_));

sgrid = [1 2]; %SPARSITIES OF beta(Junc)

sgrid_=ones(size(sgrid)); %SPARSITIES OF theta(Junc_)

csind=[1]; %coefficients wishes to be estimated

kunc=length(Junc);

lunc=length(Junc_);

Jexcc=setdiff(1:k,Jexc);

kexcc=length(Jexcc);

csn=length(csind);

%% SNIV CONFIDENCE SET (GAUTIER ROSE TSYBAKOV SECTION 3.3, MODIFIED TO ALLOW
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E[Zu]=theta WITH SPARSE theta)

relmax=3;

relmin=2;

xub=10000;

sn=length(sgrid);

%r0=sqrt(2*log(2*l/0.05)/n);

r0=-(1/sqrt(n))*norminv(0.05/(2*l));

%% COMPUTE IDENTIFIED SET

a=zeros(l,1);

b=zeros(l,k+l);

Q=zeros(k+l,k+l,l);

parfor ll=1:l

%M1=z(:,ll)*z(:,ll)’/n^2-r0^2*sparse([1:n]’,[1:n]’,z(:,ll).^2/n);

M2=(r0^2-1)*z(:,ll)/n;

M3=1-r0^2;

a11 = y’*z(:,ll);

A = sparse([1:n]’,[1:n]’,z(:,ll).^2/n);

all = a11*a11’/(n^2) - y’*r0^2*A*y;

%all=y’*(z(:,ll)*z(:,ll)’/n^2-r0^2*sparse([1:n]’,[1:n]’,z(:,ll).^2/n))*y;

bll=zeros(1,k+l);

a11 = y’*z(:,ll);

b11 = z(:,ll)’*w;

bll(1:k) = -2*a11*b11/(n^2) + 2*r0^2*y’*A*w;
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%bll(1:k)=-2*y’*(z(:,ll)*z(:,ll)’/n^2-r0^2*sparse([1:n]’,[1:n]’,z(:,ll).^2/n))*w;

bll(k+ll)=y’*M2;

Qll =zeros(k+l,k+l);

a11 = w’*z(:,ll);

Qll(1:k,1:k) = a11*a11’/(n^2) - w’*r0^2*A*w;

%Qll(1:k,1:k)=w’*(z(:,ll)*z(:,ll)’/n^2-r0^2*sparse([1:n]’,[1:n]’,z(:,ll).^2/n))*w;

Qll(k+ll,1:k)=M2’*w;

Qll(1:k,k+ll)=M2’*w;

Qll(k+ll,k+ll)=1-r0^2;

all=all/n;

bll=bll/n;

Qll=Qll/n;

a(ll)=all;

b(ll,:)=bll;

Q(:,:,ll)=Qll;

end

csi=zeros(1,k+l);

csi(csind)=1;

csi(Jexc)=[];

csi=find(csi);

csn=length(csi);

progs=[csn sn 2];

nprogs=prod(progs);
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CSp=NaN(nprogs,1);

STp=NaN(nprogs,1);

REp=NaN(nprogs,1);

parfor_progress(nprogs);

parfor kk=1:nprogs

[cc,ss,bb]=ind2sub(progs,kk);

kkk=csi(cc);

s=sgrid(ss);

s_=sgrid_(ss);

[bn,st,re]=dopoly(l,k,kunc,Junc,Jexc,lunc,Junc_,Jexc_,Jinc,Jinc_,a,b,Q,kkk,s,s_,relmax,relmin,xub,bb);

CSp(kk)=bn;

STp(kk)=st;

REp(kk)=re;

parfor_progress;

end

for cc=1:csn

for ss=1:sn

for bb=1:2

kk=sub2ind(progs,cc,ss,bb);

if bb==1

CS(cc,sn+1-ss)=CSp(kk);

ST(cc,sn+1-ss)=STp(kk);

RE(cc,sn+1-ss)=REp(kk);

else

CS(cc,sn+1+ss)=CSp(kk);

ST(cc,sn+1+ss)=STp(kk);

RE(cc,sn+1+ss)=REp(kk);

end
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end

end

end

CS(:,sn+1)=NaN;

CS

The supplemented codes:

dopoly.m function

function [bnd,st,re] =

dopoly(l,k,kunc,Junc,Jexc,lunc,Junc_,Jexc_,Jinc,Jinc_,a,b,Q,kkk,s,s_,relmax,relmin,xub,bb)

bet=[];

gam=[];

g=[];

eps=[];

h1=[];

h2=[];

i=[];

del=[];

h1_=[];

h2_=[];

i_=[];

mset(’yalmip’,true)

mset(sdpsettings(’solver’,’mosek’,’verbose’,0));

%mset(sdpsettings(’solver’,’scs’,’verbose’,0,’scs.max_iters’,5000,’scs.eps’,1.35e-6));
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mpol(’bet’,k,1);

mpol(’gam’,l,1);

mpol(’g’,l,1);

if kunc>0

mpol(’eps’,kunc,1);

mpol(’h1’,kunc,1);

mpol(’h2’,kunc,1);

mpol(’i’,kunc,1);

end

if lunc>0

mpol(’del’,lunc,1);

mpol(’h1_’,lunc,1);

mpol(’h2_’,lunc,1);

mpol(’i_’,lunc,1);

end

bet=bet(setdiff(1:k,Jexc));

gam=gam(setdiff(1:l,Jexc_));

% if isempty(Junc)

% eps=[];

% end

% if isempty(Junc_)

% del=[];

% end

junc=zeros(1,k);

junc(Junc)=1;
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junc=junc(setdiff(1:k,Jexc));

junc=find(junc);

if isempty(junc)

junc=[];

end

junc_=zeros(1,l);

junc_(Junc_)=1;

junc_=junc_(setdiff(1:l,Jexc_));

junc_=find(junc_);

if isempty(junc_)

junc_=[];

end

jinc=zeros(1,k);

jinc(Jinc)=1;

jinc=jinc(setdiff(1:k,Jexc));

jinc=find(jinc);

if isempty(jinc)

jinc=[];

end

jinc_=zeros(1,l);

jinc_(Jinc_)=1;

jinc_=jinc_(setdiff(1:l,Jexc_));

jinc_=find(jinc_);

if isempty(jinc_)

jinc_=[];

end
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the=[bet;gam];

kp=[setdiff(1:k,Jexc),k+setdiff(1:l,Jexc_)];

for ll=1:l

g(ll)=a(ll)+b(ll,kp)*the+the’*Q(kp,kp,ll)*the;

end

betunc=bet(junc);

for ll=1:kunc

h1(ll)=betunc(ll)-xub*eps(ll);

h2(ll)=betunc(ll)+xub*eps(ll);

end

for ll=1:kunc

i(ll)=eps(ll)*(1-eps(ll));

end

gamunc=gam(junc_);

for ll=1:lunc

h1_(ll)=gamunc(ll)-xub*del(ll);

h2_(ll)=gamunc(ll)+xub*del(ll);

end

for ll=1:lunc

i_(ll)=del(ll)*(1-del(ll));

end

K=[g<=0;bet(jinc)<=xub;bet(jinc)>=-xub;gam(jinc_)<=xub;gam(jinc_)>=-xub];

if kunc>0
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K=[K;i==0;0<=eps;eps<=1;sum(eps)<=s;h1<=0;h2>=0;(1-eps).*bet(junc)==0];

end

if lunc>0

K=[K;i_==0;0<=del;del<=1;sum(del)<=s_;h1_<=0;h2_>=0;(1-del).*gam(junc_)==0];

end

f=the(kkk);

if bb==1

[bnd,st,re]=lbcompute(f,K,relmax,relmin);

else

[bnd,st,re]=ubcompute(f,K,relmax,relmin);

end

end

lbcompute.m function (nested in the dopoly function)

function [lb,stlb,relb] = lbcompute(f,K,relmax,relmin)

rel=relmin;

status=-1;

while status<1 && rel<=relmax

P=msdp(min(f),K,rel);

[status,obj]=msol(P);

rel=rel+1;

end

lb=obj;

stlb=status;

relb=rel-1;
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end

ubcompute.m function (nested in the dopoly function)

function [ub,stub,reub] = ubcompute(f,K,relmax,relmin)

rel=relmin;

status=-1;

while status<1 && rel<=relmax

P=msdp(max(f),K,rel);

[status,obj]=msol(P);

rel=rel+1;

end

ub=obj;

stub=status;

reub=rel-1;

end

parforprogress.mto print out the results and keeping track of the solutions:

function percent = parfor_progress(N)

%PARFOR_PROGRESS Progress monitor (progress bar) that works with parfor.

% PARFOR_PROGRESS works by creating a file called parfor_progress.txt in

% your working directory, and then keeping track of the parfor loop’s

% progress within that file. This workaround is necessary because parfor

% workers cannot communicate with one another so there is no simple way

% to know which iterations have finished and which haven’t.

%

% PARFOR_PROGRESS(N) initializes the progress monitor for a set of N

% upcoming calculations.

%
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% PARFOR_PROGRESS updates the progress inside your parfor loop and

% displays an updated progress bar.

%

% PARFOR_PROGRESS(0) deletes parfor_progress.txt and finalizes progress

% bar.

%

% To suppress output from any of these functions, just ask for a return

% variable from the function calls, like PERCENT = PARFOR_PROGRESS which

% returns the percentage of completion.

%

% Example:

%

% N = 100;

% parfor_progress(N);

% parfor i=1:N

% pause(rand); % Replace with real code

% parfor_progress;

% end

% parfor_progress(0);

%

% See also PARFOR.

% By Jeremy Scheff - jdscheff@gmail.com - http://www.jeremyscheff.com/

%error(narginchk(0, 1, nargin, ’struct’));

if nargin < 1

N = -1;

end
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percent = 0;

w = 50; % Width of progress bar

if N > 0

f = fopen(’parfor_progress.txt’, ’w’);

if f<0

error(’Do you have write permissions for %s?’, pwd);

end

fprintf(f, ’%d\n’, N); % Save N at the top of progress.txt

fclose(f);

if nargout == 0

disp([’ 0%[>’, repmat(’ ’, 1, w), ’]’]);

end

elseif N == 0

delete(’parfor_progress.txt’);

percent = 100;

if nargout == 0

disp([repmat(char(8), 1, (w+9)), char(10), ’100%[’, repmat(’=’, 1, w+1),

’]’]);

end

else

if ~exist(’parfor_progress.txt’, ’file’)

error(’parfor_progress.txt not found. Run PARFOR_PROGRESS(N) before

PARFOR_PROGRESS to initialize parfor_progress.txt.’);

end
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f = fopen(’parfor_progress.txt’, ’a’);

fprintf(f, ’1\n’);

fclose(f);

f = fopen(’parfor_progress.txt’, ’r’);

progress = fscanf(f, ’%d’);

fclose(f);

percent = (length(progress)-1)/progress(1)*100;

if nargout == 0

perc = sprintf(’%3.0f%%’, percent); % 4 characters wide, percentage

disp([repmat(char(8), 1, (w+9)), char(10), perc, ’[’, repmat(’=’, 1,

round(percent*w/100)), ’>’, repmat(’ ’, 1, w - round(percent*w/100)),

’]’]);

end

end

And other minor functions:

function Y = VChooseK(X, K)

function x=vec(X)

x=reshape(X,[],1);

end
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